GCN and NAS in Semantic Segmentation

Speaker: Xia Li Date : 7th, Apr, 2019

Outline

1.GCN in Semantic Segmentation

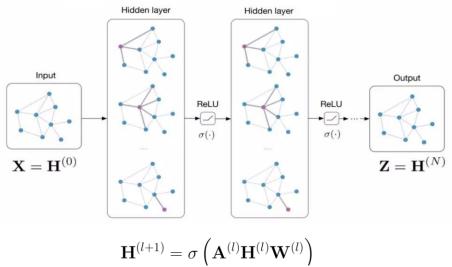
A^2Net
GloRe
SGR
GCU

2.NAS in Semantic Segmentation

DPC
Auto-DeepLab

1. GCN in Semantic Segmentation

Input: Feature matrix $\mathbf{X} \in \mathbb{R}^{N imes E}$, preprocessed adjacency matrix $\hat{\mathbf{A}}$



$$\mathbf{H}^{(l+1)} = \sigma \left(\mathbf{A}^{(l)} \mathbf{H}^{(l)} \mathbf{W}^{(l)} \right)$$

Or
$$\mathbf{H}^{(l+1)} = \sigma \left(\left(I - \hat{\mathbf{A}}^{(l)} \right) \mathbf{H}^{(l)} \mathbf{W}^{(l)} \right)$$

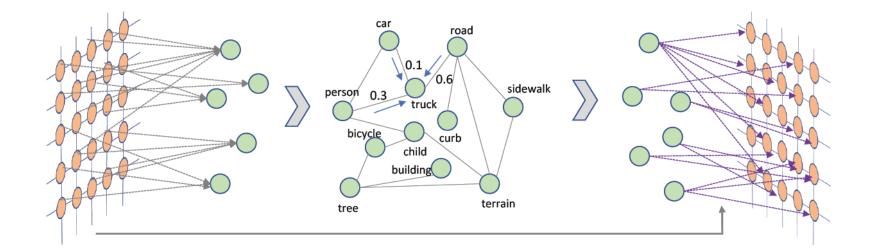
Where $\hat{A} = D^{-\frac{1}{2}} A D^{-\frac{1}{2}}, D = diag \left(A \times \vec{1} \right)$

Characteristics of GCN

- 1. Non-grid structure
- 2. Well-defined adjacency matrix A

How to apply on semantic segmentation task?

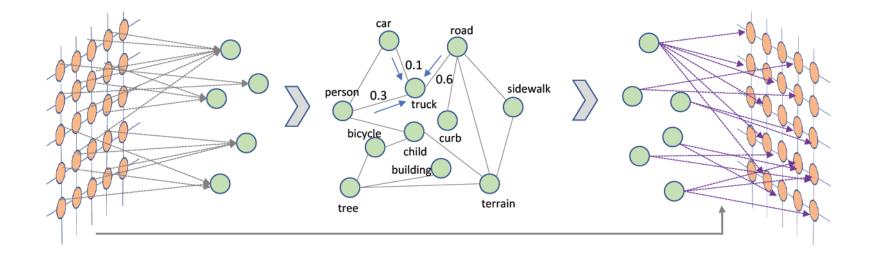
1.0 Prerequisites



In general, 3 steps are needed:

- 1. Pixels to entities
- 2. GCN upon entities
- 3. Entities to pixels

1.0 Prerequisites



In general, 3 steps are needed:

- 1. Pixels to entities
- 2. GCN upon entities
- 3. Entities to pixels

Difficulties:

- 1. How to proj and re-proj?
- 2. How to define A?

1.1 A^2Net

For every spatial input location *i*

$$\mathbf{z}_{i} = \mathbf{F}_{\text{distr}} \left(\underbrace{\mathbf{G}_{\text{gather}}(X), \mathbf{v}_{i}}_{\text{Proj}} \right)$$

Re-proj

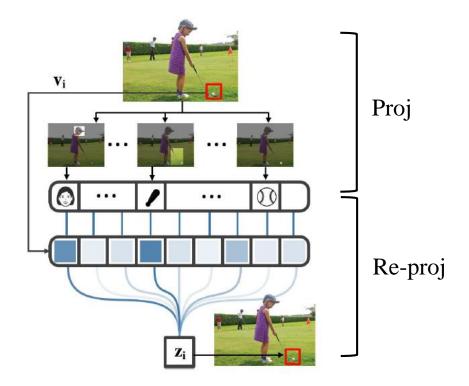
Chen, Yunpeng, et al. "A[^] 2-Nets: Double Attention Networks." *Advances in Neural Information Processing Systems*. 2018.

1.1 A^2Net

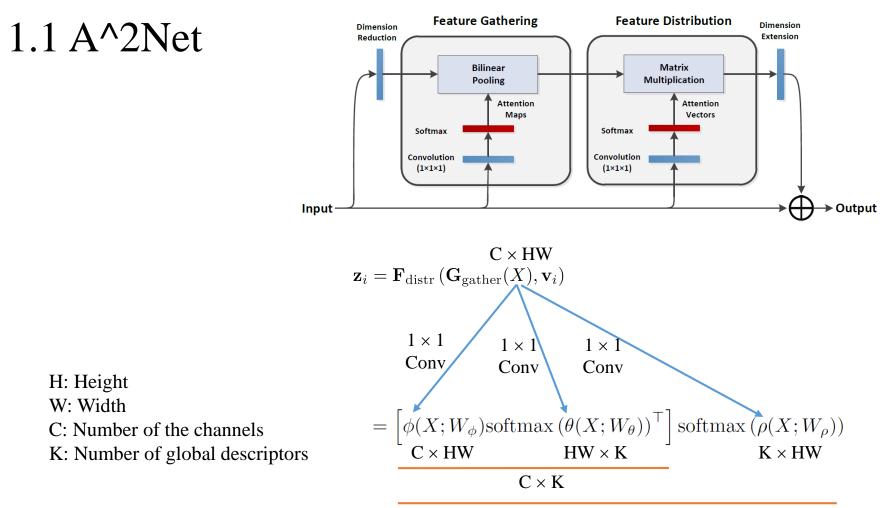
For every spatial input location *i*

$$\mathbf{z}_i = \mathbf{F}_{\text{distr}} \left(\mathbf{G}_{\text{gather}}(X), \mathbf{v}_i \right)$$

Proj
Re-proj



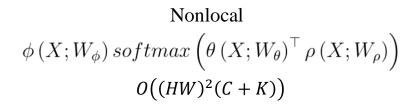
Chen, Yunpeng, et al. "A²-Nets: Double Attention Networks." Advances in Neural Information Processing Systems. 2018.



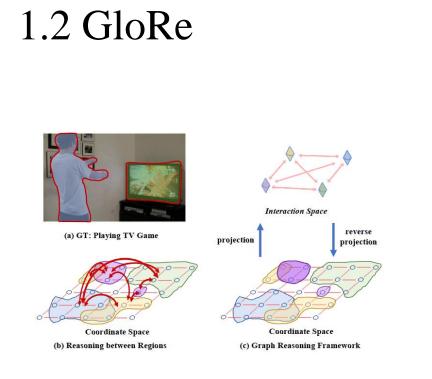
 $\mathbf{C} \times \mathbf{HW}$

1.1 A^2Net **Feature Gathering Feature Distribution** Dimension Dimension Extension Reduction Bilinear Matrix Multiplication Pooling Attention Attention Maps Vectors Softmax Softmax Convolution Convolution Using four 1×1 convolutions (1×1×1) (1×1×1) Two construct bottleneck 1 Input Output 2. Another two used for attention, Which can be merged as one. A^2Net $\left[\phi(X; W_{\phi}) \operatorname{softmax} \left(\theta(X; W_{\theta})\right)^{\top}\right] \operatorname{softmax} \left(\rho(X; W_{\rho})\right)$ O(HWCK)

Comparison with Nonlocal: Reduce the complexity by using the multiplication law.

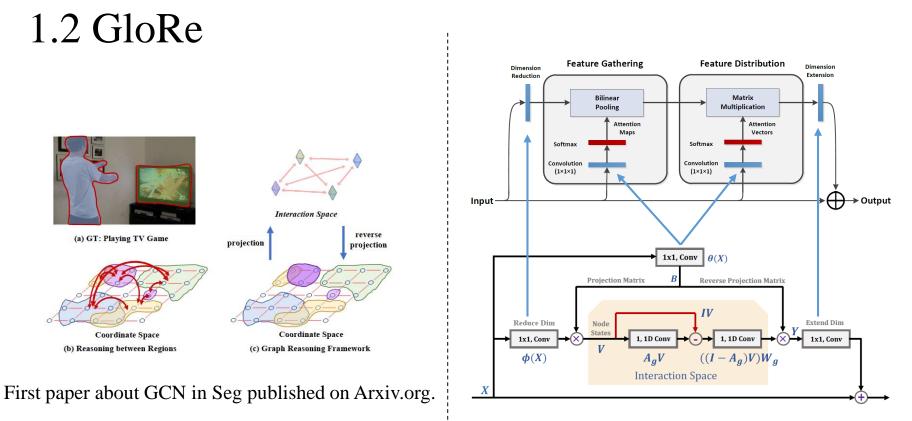


23 July 2019



First paper about GCN in Seg published on Arxiv.org.

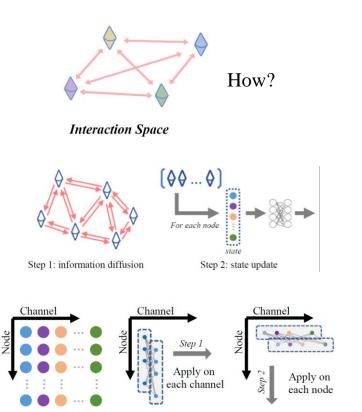
Chen, Yunpeng, et al. "Graph-Based Global Reasoning Networks." IEEE Conference on Computer Vision and Pattern Recognition. 2019.

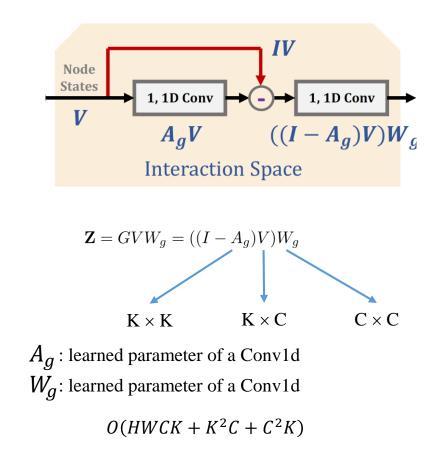


Using five 1×1 convolutions To execute global reasoning.

Chen, Yunpeng, et al. "Graph-Based Global Reasoning Networks." IEEE Conference on Computer Vision and Pattern Recognition. 2019.

1.2 GloRe





1.2 GloRe

Table 3: Semantic segmentation results on Cityscapes validation set. ImageNet pre-trained ResNet-50 is used as the backbone CNN.

FCN	multi-grid	+1 GloRe unit	+2 GloRe unit	mIoU	Δ mIoU
\checkmark				75.79%	
\checkmark	\checkmark			75.79% 76.45%	0.66%
\checkmark	\checkmark	\checkmark		78.25%	
\checkmark	\checkmark		\checkmark	77.84%	2.05%

Table 4: Semantic segmentation results on Cityscapes test set. All networks are evaluated by the testing server. Our method is trained without using extra "coarse" training set.

Method	Backbone	IoU cla.	iIoU cla.	IoU cat.	iIoU cat.
DeepLab-v2 [4] PSPNet [36]	ResNet101 ResNet101	70.4% 78.4%	42.6% 56.7%	86.4% 90.6%	67.7% 78.6%
PSANet [37]	ResNet101	80.1%	50.7%	90.0%	78.0%
DenseASPP [35]	ResNet101	80.6%			
FCN + 1 GloRe unit FCN + 1 GloRe unit	ResNet50 ResNet101	79.5% 80.9%	60.3% 62.2%	91.3% 91.5%	81.5% 82.1%

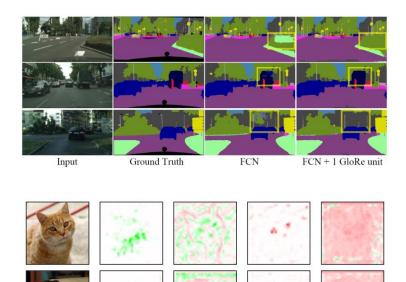
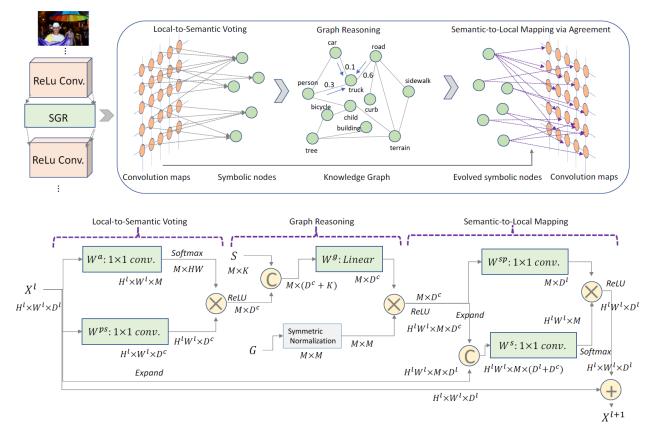


Figure 7: Visualization of the learned projection weights (best viewed in color). Red color denotes positive and green negative values, color brightness denotes magnitude.

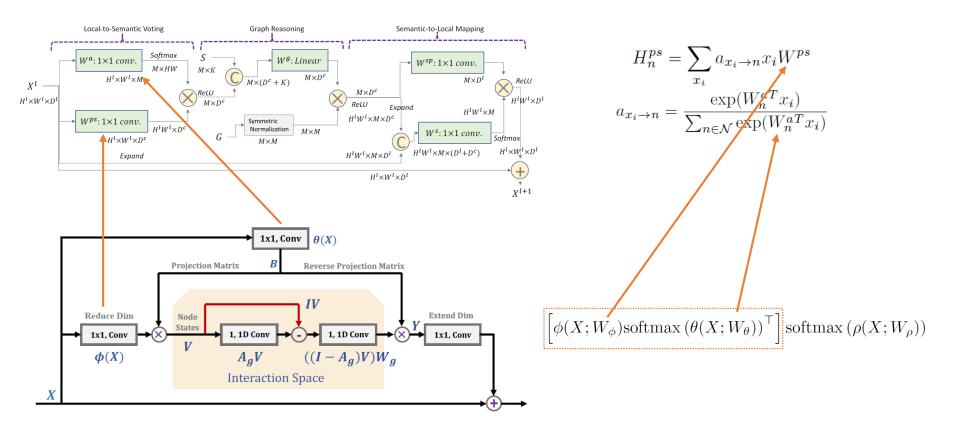
1.3 SGR



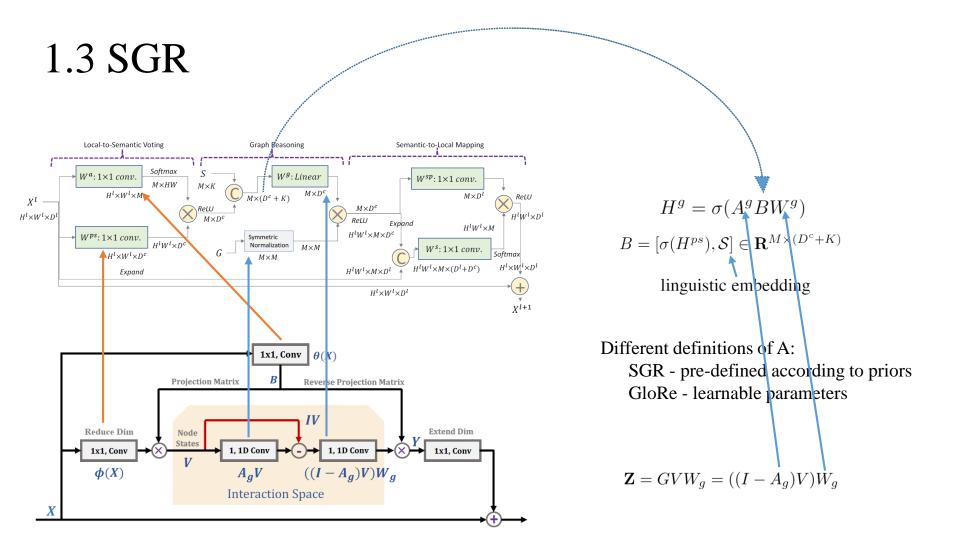
Liang, Xiaodan, et al. "Symbolic graph reasoning meets convolutions." Advances in Neural Information Processing Systems. 2018.

23 July 2019

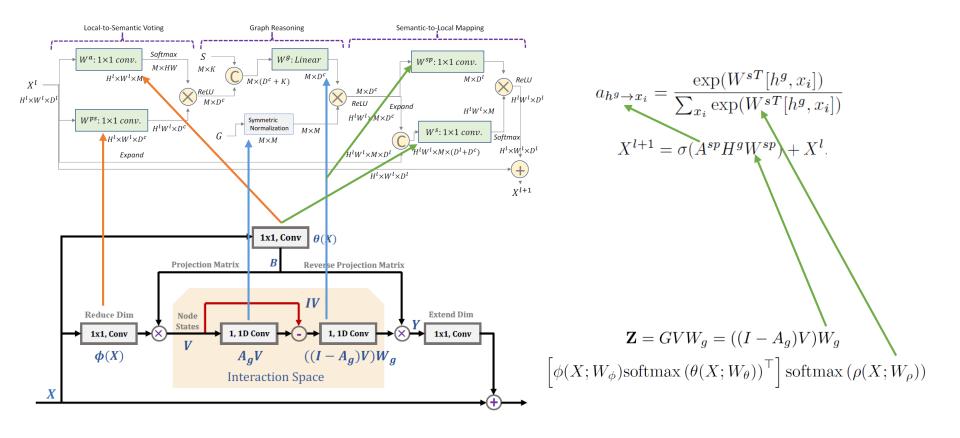
1.3 SGR

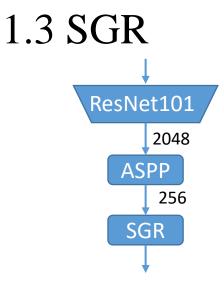


SPPA 人工智能前沿学生论坛



1.3 SGR





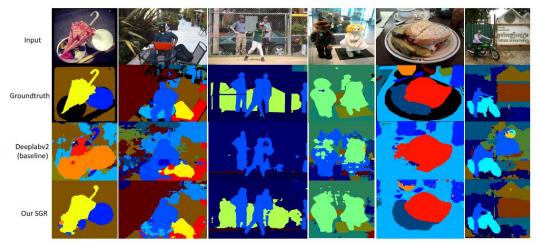


Figure 3: Qualitative comparison results on Coco-stuff dataset.

Class acc.	acc.	mean IoU
38.5	60.4	27.2
45.5	65.1	34.4
42.8	63.0	31.2
45.8	66.6	34.3
47.0	68.5	36.2
47.9	68.4	38.1
49.1	69.6	38.3
48.6	69.5	38.4
47.3	67.9	37.2
47.6	68.3	37.5
49.3	69.9	38.7
49.4	69.7	38.8
49.8	70.5	39.1
	38.5 45.5 42.8 45.8 47.0 47.9 49.1 48.6 47.3 47.6 49.3 49.4 49.8	45.5 65.1 42.8 63.0 45.8 66.6 47.0 68.5 47.9 68.4 49.1 69.6 48.6 69.5 47.3 67.9 47.6 68.3 49.3 69.9 49.4 69.7 49.8 70.5

 Table 1: Comparison on Coco-Stuff test set

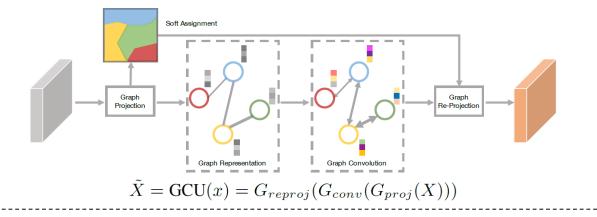
(%). All our models are based on ResNet-101.

Method	mean IoU (%)
FCN [31]	37.8
CRF-RNN [51]	39.3
ParseNet [30]	40.4
BoxSup [8]	40.5
HO CRF [1]	41.3
Piecewise [29]	43.3
VeryDeep [44]	44.5
DeepLab-v2 (ResNet-101) [6]	45.7
RefineNet (Res152) [28]	47.3
Our SGR (ResNet-101)	50.8
Our SGR (Transfer convs)	51.3
Our SGR (Transfer SGR)	52.5
Table 2: Comparison on PAS	CAL-Context
test set(%).	

Method	mean IoU	pixel acc.
FCN [31]	29.39	71.32
SegNet [2]	21.64	71.00
DilatedNet [47]	32.31	73.55
CascadeNet [52]	34.90	74.52
ResNet-101, 2 conv [45]	39.40	79.07
PSPNet (ResNet-101)DA_AL [50]	41.96	80.64
Conditional Softmax [38]	31.27	72.23
Word2Vec [10]	29.18	71.31
Joint-Cosine [49]	31.52	73.15
DeepLabv2 (ResNet-101) [6]	38.97	79.01
DSSPN (ResNet-101) [27]	42.03	81.21
Our SGR (ResNet-101)	44.32	81.43
Table 3: Comparison on the	he ADE2	20K val
set [52] (%). "Conditional	Softmax	x [38]",
"Word2Vec [10]" and "Joint-	Cosine [4	49]" use
VGG as backbone. We use "De	epLabv2 (ResNet-

101) [6]" as baseline.

1.4 GCU



Graph Projection

GCU

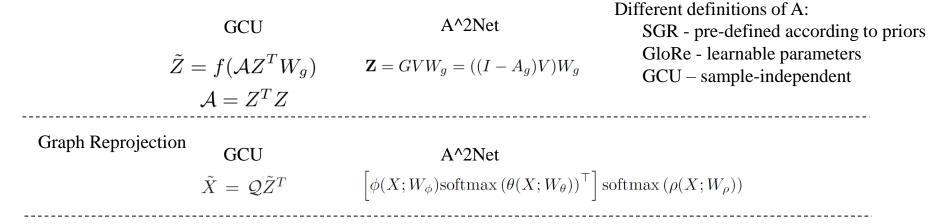
$$q_{ij}^{k} = \frac{\exp\left(-\|(x_{ij} - w_{k})/\sigma_{k}\|_{2}^{2}/2\right)}{\sum_{k} \exp\left(-\|(x_{ij} - w_{k})/\sigma_{k}\|_{2}^{2}/2\right)}$$
$$z_{k} = \frac{z_{k}'}{\|z_{k}'\|_{2}}, \quad z_{k}' = \frac{1}{\sum_{ij} q_{ij}^{k}} \sum_{ij} q_{ij}^{k} \left(x_{ij} - w_{k}\right)/\sigma_{k}$$

$$q_{ij}^{k} = \frac{\exp\left(x_{ij}^{\top}w_{k}\right)}{\sum_{k}\exp\left(x_{ij}^{\top}w_{k}\right)}$$
$$z_{k} = \frac{1}{\sum_{ij}q_{ij}^{k}}\sum_{ij}q_{ij}^{k}x_{ij}$$
$$\left[\phi(X;W_{\phi})\operatorname{softmax}\left(\theta(X;W_{\theta})\right)^{\top}\right]\operatorname{softmax}\left(\rho(X;W_{\rho})\right)$$

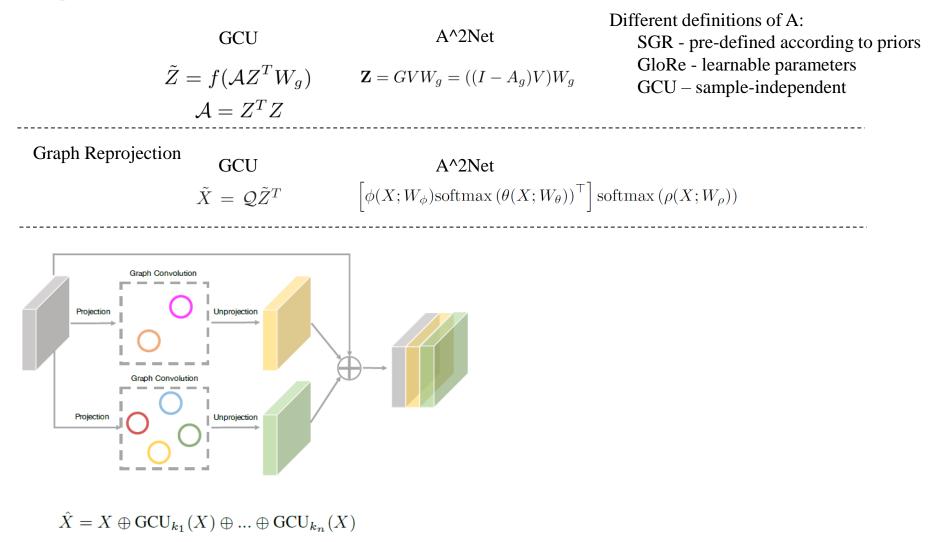
Li, Yin, and Abhinav Gupta. "Beyond Grids: Learning Graph Representations for Visual Recognition." Advances in Neural Information Processing Systems. 2018.

23 July 2019

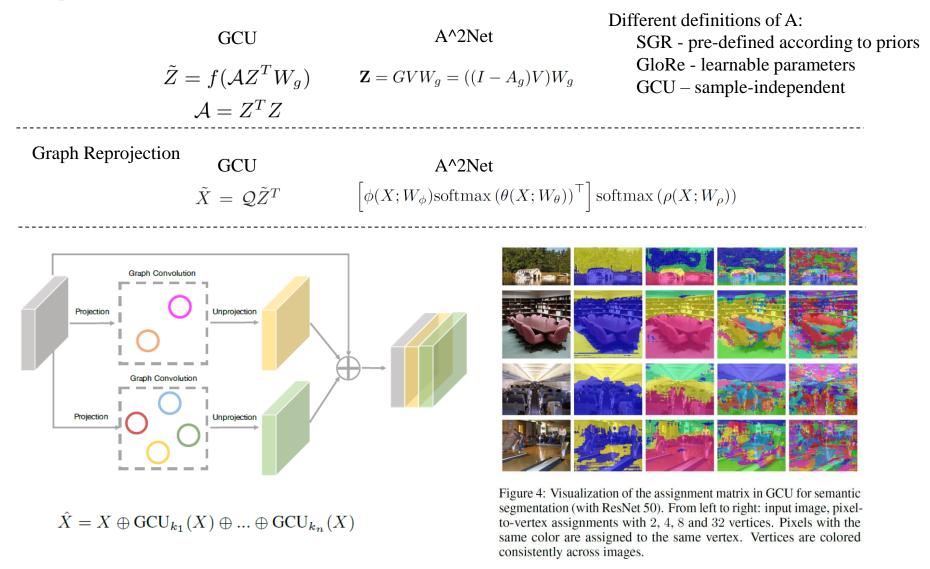
Graph Convolution



Graph Convolution



Graph Convolution



1.4 GCU

Figure 3: Visualization of segmentation results on ADE20K (with ResNet 50). Our method produces "smoother" maps–regions that are similar are likely to be labeled as the same category.

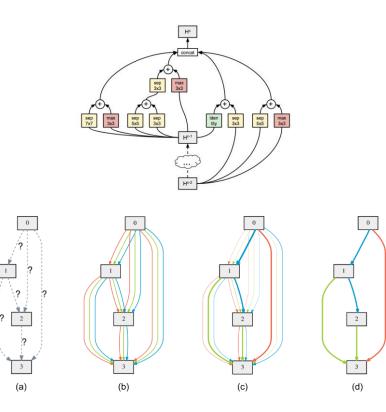
Backbone	Method	PixAcc%	mIoU%
	FCN-8s [12]	71.32	29.39
VGG16 [42]	SegNet [41]	71.00	21.64
VUU10 [<u>42</u>]	DilatedNet [17]	73.55	32.31
	CascadeNet 37	74.52	32.31 34.90 35.60 42.78 41.11 42.60
	Dilated FCN	76.51	35.60
Res50 [38]	PSPNet 13	80.76	42.78
Kes50 [56]	EncNet [14]	79.73	41.11
	GCU (ours)	79.51	42.60
	RefineNet [19]	-	40.20
Res101 [38]	PSPNet 13	81.39	43.29
Kes101 [30]	EncNet [14]	81.69	44.65
	GCU (ours)	81.19	44.81

Table 1: Results of semantic segmentation on ADE20K. mIoU scores within 0.5% of the best result are marked. With ResNet 50, our method improves Dilated FCN by 7%. With ResNet 101, our method outperforms PSPNet by 1.5%.

2. NAS in Semantic Segmentation

Key components of Network Architecture Search (NAS)

- 1. Search space
 - 1. Block level
 - 2. Cell level
- 2. Proxy task
 - 1. Low-resolution image
- 3. Search strategy
 - 1. Reinforcement learning
 - 2. Evolutionary algorithm
 - 3. Bayesian optimization
 - 4. Differentiable methods



2.1 DPC

- 1. Search space
 - Head
 - Cell level
- 2. Search strategy
 - Random search

Cell definition: (X_i, OP_i, Y_i)

 $\mathcal{X}_i = \{\mathcal{F}, Y_1, \dots, Y_{i-1}\}$ $Y = concat(Y_1, Y_2, \dots, Y_{\mathcal{B}})$

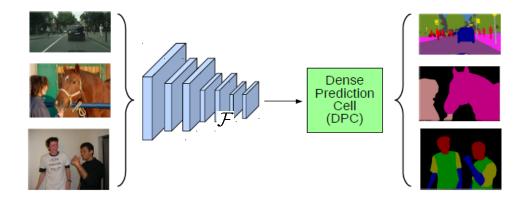
- Convolution with a 1×1 kernel.
- $OP_i \bullet 3 \times 3$ atrous separable convolution with rate $r_h \times r_w$, where r_h and $r_w \in \{1, 3, 6, 9, \dots, 21\}$.
 - Average spatial pyramid pooling with grid size $g_h \times g_w$, where g_h and $g_w \in \{1, 2, 4, 8\}$.

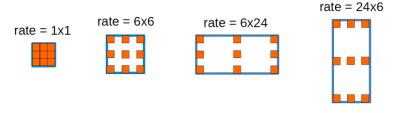
In total 81 operators

$$\mathcal{B}! \times 81^{\mathcal{B}} \approx 4.2 \times 10^{11}$$

Chen, Liang-Chieh, et al. "Searching for efficient multi-scale architectures for dense image prediction." Advances in Neural Information Processing Systems. 2018.

23 July 2019

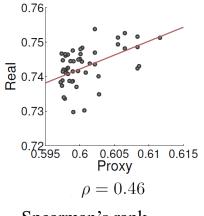




2.1 DPC

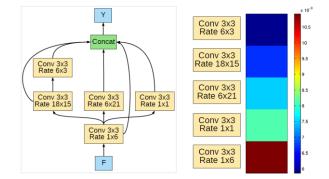
- 3. Proxy task
 - Small backbone
 - Fix backbone
 - Early stopping

From 1 week to 90 minutes



Spearman's rank correlation coefficient

Using 370 GPUs over one week Explore 28k DPC architectures



Method	road	sidewalk	building	wall	fence	pole	light	sign	vege.	terrain	sky	person	rider	car	truck	bus	train	mbike	bicycle	mIOU
PSPNet [97]	98.7	86.9	93.5	58.4	63.7	67.7	76.1	80.5	93.6	72.2	95.3	86.8	71.9	96.2	77.7	91.5	83.6	70.8	77.5	81.2
Mapillary Research [6]	98.4	85.0	93.7	61.8	63.9	67.7	77.4	80.8	93.7	71.9	95.6	86.7	72.8	95.7	79.9	93.1	89.7	72.6	78.2	82.0
DeepLabv3+ [14]	98.7	87.0	93.9	59.5	63.7	71.4	78.2	82.2	94.0	73.0	95.9	88.0	73.3	96.4	78.0	90.9	83.9	73.8	78.9	82.1
DPC	98.7	87.1	93.8	57.7	63.5	71.0	78.0	82.1	94.0	73.3	95.4	88.2	74.5	96.5	81.2	93.3	89.0	74.1	79.0	82.7

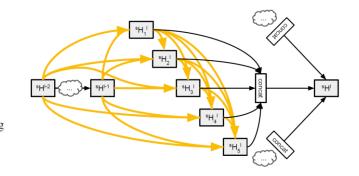
Table 2: Cityscapes *test* set performance across leading competitive models.

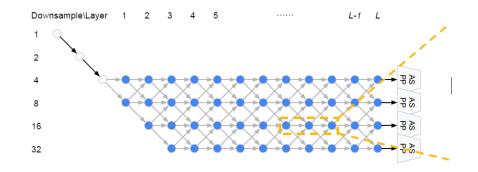
Method	aero	bike	bird	boat	bottle	bus	car	cat	chair	COW	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mIOU
EncNet [95]	95.3	76.9	94.2	80.2	85.3	96.5	90.8	96.3	47.9	93.9	80.0	92.4	96.6	90.5	91.5	70.9	93.6	66.5	87.7	80.8	85.9
DFN [93]	96.4	78.6	95.5	79.1	86.4	97.1	91.4	95.0	47.7	92.9	77.2	91.0	96.7	92.2	91.7	76.5	93.1	64.4	88.3	81.2	86.2
DeepLabv3+ [14]	97.0	77.1	97.1	79.3	89.3	97.4	93.2	96.6	56.9	95.0	79.2	93.1	97.0	94.0	92.8	71.3	92.9	72.4	91.0	84.9	87.8
ExFuse [96]	96.8	80.3	97.0	82.5	87.8	96.3	92.6	96.4	53.3	94.3	78.4	94.1	94.9	91.6	92.3	81.7	94.8	70.3	90.1	83.8	87.9
MSCI [48]	96.8	76.8	97.0	80.6	89.3	97.4	93.8	97.1	56.7	94.3	78.3	93.5	97.1	94.0	92.8	72.3	92.6	73.6	90.8	85.4	88.0
DPC	97.4	77.5	96.6	79.4	87.2	97.6	90.1	96.6	56.8	97.0	77.0	94.3	97.5	93.2	92.5	78.9	94.3	70.1	91.4	84.0	87.9

Table 4: PASCAL VOC 2012 test set performance.

2.3 Auto-DeepLab

- 1. Search space
 - 1. Cell level (I_1, I_2, O_1, O_2, C) For the l-th cell in the i-th block
 - $I_i^l \in \left\{ H^{l-2}, H^{l-1}, \left\{ H_1^l, \cdots, H_i^{l-1} \right\} \right\}$
 - 3×3 depthwise-separable conv 3×3 average pooling
 - 5×5 depthwise-separable conv 3×3 max pooling
 - $O \bullet 3 \times 3$ atrous conv with rate 2 • skip connection • no connection (zero)
 - 5×5 atrous conv with rate 2
 - C : element-wise addition
 - 2. Block level

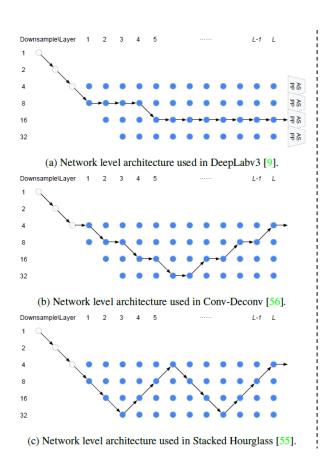




Liu, Chenxi, et al. "Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation." arXiv preprint arXiv:1901.02985 (2019).

23 July 2019

2.3 Auto-DeepLab



3. Continuous relaxation

1. Cell level

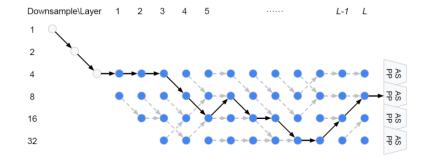
$$H_{i}^{l} = \sum_{H_{j}^{l} \in \mathcal{I}_{i}^{l}} O_{j \to i}(H_{j}^{l}) \qquad \sum_{k=1}^{|\mathcal{O}|} \alpha_{j \to i}^{k} = 1 \qquad \forall i, j$$

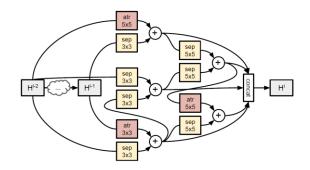
$$\bar{O}_{j \to i}(H_{j}^{l}) = \sum_{O^{k} \in \mathcal{O}} \alpha_{j \to i}^{k} O^{k}(H_{j}^{l}) \qquad \alpha_{j \to i}^{k} \ge 0 \qquad \forall i, j, k$$

2. Block level

- 4. Search strategy
 - 1. Update network weights w by $\nabla_w \mathcal{L}_{trainA}(w, \alpha, \beta)$
 - 2. Update architecture α, β by $\nabla_{\alpha,\beta} \mathcal{L}_{trainB}(w, \alpha, \beta)$
- 5. Decoding discrete architecture
 - 1. Cell architecture
 - Argmax
 - 2. Block architecture
 - Viteerbi algorithm

2.3 Auto-DeepLab





Method	ImageNet	Coarse	mIOU (%)
FRRN-A [60]			63.0
GridNet [17]			69.5
FRRN-B [60]			71.8
Auto-DeepLab-S			79.9
Auto-DeepLab-L			80.4
Auto-DeepLab-S		1	80.9
Auto-DeepLab-L		~	82.1
ResNet-38 [81]	1	1	80.6
PSPNet [87]	~	~	81.2
Mapillary [4]	1	1	82.0
DeepLabv3+ [11]	~	~	82.1
DPC [6]	1	~	82.7
DRN_CRL_Coarse [90]	~	~	82.8

Table 4: Cityscapes test set results with *multi-scale* inputs during inference. **ImageNet:** Models pretrained on ImageNet. **Coarse:** Models exploit coarse annotations.

Method	ImageNet	сосо	mIOU (%)
Auto-DeepLab-S		1	82.5
Auto-DeepLab-M		1	84.1
Auto-DeepLab-L		1	85.6
RefineNet [44]	1	1	84.2
ResNet-38 [81]	1	1	84.9
PSPNet [87]	1	1	85.4
DeepLabv3+[11]	1	~	87.8
MSCI [43]	1	1	88.0

Table 6: PASCAL VOC 2012 test set results. Our Auto-DeepLab-L attains comparable performance with many state-of-the-art models which are pretrained on both **ImageNet** and **COCO** datasets. We refer readers to the official leader-board for other state-of-the-art models.

Method	ImageNet	mIOU (%)	Pixel-Acc (%)	Avg (%)
Auto-DeepLab-S		40.69	80.60	60.65
Auto-DeepLab-M		42.19	81.09	61.64
Auto-DeepLab-L		43.98	81.72	62.85
CascadeNet (VGG-16) [89]	1	34.90	74.52	54.71
RefineNet (ResNet-152) [44]	1	40.70	-	-
UPerNet (ResNet-101) [82] †	1	42.66	81.01	61.84
PSPNet (ResNet-152) [87]	1	43.51	81.38	62.45
PSPNet (ResNet-269) [87]	1	44.94	81.69	63.32
DeepLabv3+ (Xception-65) [11] †	1	45.65	82.52	64.09

Table 7: ADE20K validation set results. We employ *multi-scale* inputs during inference. †: Results are obtained from their up-to-date model zoo websites respectively. **Ima-geNet:** Models pretrained on ImageNet. Avg: Average of mIOU and Pixel-Accuracy.

6. References

[1] Chen, Yunpeng, et al. "A²-Nets: Double Attention Networks." *Advances in Neural Information Processing Systems*. 2018.

[2] Chen, Yunpeng, et al. "Graph-Based Global Reasoning Networks." IEEE Conference on Computer Vision and Pattern Recognition. 2019.

[3] Liang, Xiaodan, et al. "Symbolic graph reasoning meets convolutions." Advances in Neural Information Processing Systems. 2018.

[4] Li, Yin, and Abhinav Gupta. "Beyond Grids: Learning Graph Representations for Visual Recognition." Advances in Neural Information Processing Systems. 2018.

[5] Chen, Liang-Chieh, et al. "Searching for efficient multi-scale architectures for dense image prediction." Advances in Neural Information Processing Systems. 2018.

[6] Liu, Chenxi, et al. "Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation." *arXiv preprint arXiv:1901.02985* (2019).

Thanks

Speaker : Xia Li

